Quantum Machine Learning: An Applied Approach

The Theory and Application of Quantum Machine Learning in Science and Industry

Authors: Ganguly, Santanu

Download source code Free Preview
  • The first book related to hands-on aspects of quantum machine learning
  • Optimized for self-study without jargon and centered on easy reading
  • Code examples utilizing open source libraries and languages are available for download from the book's website
  • Covers all of the most important quantum machine learning algorithms, with practical examples
see more benefits

Buy this book

eBook $39.99
price for USA
  • The eBook version of this title will be available soon
  • ISBN 978-1-4842-7098-1
  • Digitally watermarked, DRM-free
  • Included format: EPUB, PDF
  • ebooks can be used on all reading devices
  • Immediate eBook download after purchase
Softcover $54.99
price for USA
  • ISBN 978-1-4842-7097-4
  • Free shipping for individuals worldwide
  • Institutional customers should get in touch with their account manager
  • Covid-19 shipping restrictions
  • Usually ready to be dispatched within 3 to 5 business days, if in stock
About this book

Know how to adapt quantum computing and machine learning algorithms. This book takes you on a journey into hands-on quantum machine learning (QML) through various options available in industry and research.

The first three chapters offer insights into the combination of the science of quantum mechanics and the techniques of machine learning, where concepts of classical information technology meet the power of physics. Subsequent chapters follow a systematic deep dive into various quantum machine learning algorithms, quantum optimization, applications of advanced QML algorithms (quantum k-means, quantum k-medians, quantum neural networks, etc.), qubit state preparation for specific QML algorithms, inference, polynomial Hamiltonian simulation, and more, finishing with advanced and up-to-date research areas such as quantum walks, QML via Tensor Networks, and QBoost.

Hands-on exercises from open source libraries regularly used today in industry and research are included, such as Qiskit, Rigetti's Forest, D-Wave's dOcean, Google's Cirq and brand new TensorFlow Quantum, and Xanadu's PennyLane, accompanied by guided implementation instructions. Wherever applicable, the book also shares various options of accessing quantum computing and machine learning ecosystems as may be relevant to specific algorithms.

The book offers a hands-on approach to the field of QML using updated libraries and algorithms in this emerging field. You will benefit from the concrete examples and understanding of tools and concepts for building intelligent systems boosted by the quantum computing ecosystem. This work leverages the author’s active research in the field and is accompanied by a constantly updated website for the book which provides all of the code examples.


What You will Learn

  • Understand and explore quantum computing and quantum machine learning, and their application in science and industry
  • Explore various data training models utilizing quantum machine learning algorithms and Python libraries
  • Get hands-on and familiar with applied quantum computing, including freely available cloud-based access
  • Be familiar with techniques for training and scaling quantum neural networks
  • Gain insight into the application of practical code examples without needing to acquire excessive machine learning theory or take a quantum mechanics deep dive


Who This Book Is For
Data scientists, machine learning professionals, and researchers


About the authors

Santanu Ganguly has been working in the fields of quantum technologies, cloud computing, data networking, and security (on research, design, and delivery) for over 21 years. He works in Switzerland and the United Kingdom (UK) for various Silicon Valley vendors and ISPs. He has two postgraduate degrees (one in mathematics and another in observational astrophysics), and research experience and publications in nanoscale photonics and laser spectroscopy. He is currently leading global projects out of the UK related to quantum communication and machine learning, among other technologies.

Table of contents (9 chapters)

Table of contents (9 chapters)

Buy this book

eBook $39.99
price for USA
  • The eBook version of this title will be available soon
  • ISBN 978-1-4842-7098-1
  • Digitally watermarked, DRM-free
  • Included format: EPUB, PDF
  • ebooks can be used on all reading devices
  • Immediate eBook download after purchase
Softcover $54.99
price for USA
  • ISBN 978-1-4842-7097-4
  • Free shipping for individuals worldwide
  • Institutional customers should get in touch with their account manager
  • Covid-19 shipping restrictions
  • Usually ready to be dispatched within 3 to 5 business days, if in stock
Loading...

Bibliographic Information

Bibliographic Information
Book Title
Quantum Machine Learning: An Applied Approach
Book Subtitle
The Theory and Application of Quantum Machine Learning in Science and Industry
Authors
Copyright
2021
Publisher
Apress
Copyright Holder
Santanu Ganguly
eBook ISBN
978-1-4842-7098-1
DOI
10.1007/978-1-4842-7098-1
Softcover ISBN
978-1-4842-7097-4
Edition Number
1
Number of Pages
XIX, 551
Number of Illustrations
357 b/w illustrations
Topics